Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Lipid Res ; : 100542, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38641009

RESUMO

Nitric oxide (NO), produced primarily by nitric oxide synthase (NOS) enzymes, is known to influence energy metabolism by stimulating fat uptake and oxidation. The effects of NO on de novo lipogenesis, however, are less clear. Here we demonstrate that hepatic expression of eNOS is reduced following prolonged administration of a hypercaloric high-fat diet. This results in marked reduction in the amount of S-nitrosylation of liver proteins including notably Acetyl-CoA Carboxylase (ACC), the rate-limiting enzyme in de novo lipogenesis. We further show that ACC S-nitrosylation markedly increases enzymatic activity. Diminished eNOS expression and ACC S-nitrosylation may thus represent a physiological adaptation to caloric excess by constraining lipogenesis. Our findings demonstrate that S-nitrosylation of liver proteins is subject to dietary control and suggest that de novo lipogenesis is coupled to dietary and metabolic conditions through ACC S-nitrosylation.

2.
Cell ; 186(26): 5812-5825.e21, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38056462

RESUMO

Acyl-coenzyme A (acyl-CoA) species are cofactors for numerous enzymes that acylate thousands of proteins. Here, we describe an enzyme that uses S-nitroso-CoA (SNO-CoA) as its cofactor to S-nitrosylate multiple proteins (SNO-CoA-assisted nitrosylase, SCAN). Separate domains in SCAN mediate SNO-CoA and substrate binding, allowing SCAN to selectively catalyze SNO transfer from SNO-CoA to SCAN to multiple protein targets, including the insulin receptor (INSR) and insulin receptor substrate 1 (IRS1). Insulin-stimulated S-nitrosylation of INSR/IRS1 by SCAN reduces insulin signaling physiologically, whereas increased SCAN activity in obesity causes INSR/IRS1 hypernitrosylation and insulin resistance. SCAN-deficient mice are thus protected from diabetes. In human skeletal muscle and adipose tissue, SCAN expression increases with body mass index and correlates with INSR S-nitrosylation. S-nitrosylation by SCAN/SNO-CoA thus defines a new enzyme class, a unique mode of receptor tyrosine kinase regulation, and a revised paradigm for NO function in physiology and disease.


Assuntos
Insulina , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Transdução de Sinais , Animais , Humanos , Camundongos , Acil Coenzima A/metabolismo , Tecido Adiposo/metabolismo , Resistência à Insulina , Óxido Nítrico/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo
3.
Cell Rep ; 41(4): 111538, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36288700

RESUMO

Accumulating evidence suggests that protein S-nitrosylation is enzymatically regulated and that specificity in S-nitrosylation derives from dedicated S-nitrosylases and denitrosylases that conjugate and remove S-nitrosothiols, respectively. Here, we report that mice deficient in the protein denitrosylase SCoR2 (S-nitroso-Coenzyme A Reductase 2; AKR1A1) exhibit marked reductions in serum cholesterol due to reduced secretion of the cholesterol-regulating protein PCSK9. SCoR2 associates with endoplasmic reticulum (ER) secretory machinery to control an S-nitrosylation cascade involving ER cargo-selection proteins SAR1 and SURF4, which moonlight as S-nitrosylases. SAR1 acts as a SURF4 nitrosylase and SURF4 as a PCSK9 nitrosylase to inhibit PCSK9 secretion, while SCoR2 counteracts nitrosylase activity by promoting PCSK9 denitrosylation. Inhibition of PCSK9 by an NO-based drug requires nitrosylase activity, and small-molecule inhibition of SCoR2 phenocopies the PCSK9-mediated reductions in cholesterol observed in SCoR2-deficient mice. Our results reveal enzymatic machinery controlling cholesterol levels through S-nitrosylation and suggest a distinct treatment paradigm for cardiovascular disease.


Assuntos
Pró-Proteína Convertase 9 , S-Nitrosotióis , Camundongos , Animais , Proteínas/metabolismo , Oxirredutases/metabolismo , S-Nitrosotióis/metabolismo , Homeostase , Óxido Nítrico/metabolismo , Proteínas de Membrana
4.
Artigo em Inglês | MEDLINE | ID: mdl-34790976

RESUMO

S-nitrosoglutathione reductase (GSNOR) is a denitrosylase enzyme responsible for reverting protein S-nitrosylation (SNO). In this issue, Salerno et al. [1] provide evidence that GSNOR deficiency - and thus elevated protein S-nitrosylation - accelerates cardiomyocyte differentiation and maturation of induced pluripotent stem cells (iPSCs). GSNOR inhibition (GSNOR-/- iPSCs) expedites the epithelial-mesenchymal transition (EMT) and promotes cardiomyocyte progenitor cell proliferation, differentiation, and migration. These findings are consistent with emerging roles for protein S-nitrosylation in developmental biology (including cardiomyocyte development), aging/longevity, and cancer.

5.
J Biol Chem ; 294(48): 18285-18293, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31649033

RESUMO

Oxidative modification of Cys residues by NO results in S-nitrosylation, a ubiquitous post-translational modification and a primary mediator of redox-based cellular signaling. Steady-state levels of S-nitrosylated proteins are largely determined by denitrosylase enzymes that couple NAD(P)H oxidation with reduction of S-nitrosothiols, including protein and low-molecular-weight (LMW) S-nitrosothiols (S-nitroso-GSH (GSNO) and S-nitroso-CoA (SNO-CoA)). SNO-CoA reductases require NADPH, whereas enzymatic reduction of GSNO can involve either NADH or NADPH. Notably, GSNO reductase (GSNOR, Adh5) accounts for most NADH-dependent GSNOR activity, whereas NADPH-dependent GSNOR activity is largely unaccounted for (CBR1 mediates a minor portion). Here, we de novo purified NADPH-coupled GSNOR activity from mammalian tissues and identified aldo-keto reductase family 1 member A1 (AKR1A1), the archetypal mammalian SNO-CoA reductase, as a primary mediator of NADPH-coupled GSNOR activity in these tissues. Kinetic analyses suggested an AKR1A1 substrate preference of SNO-CoA > GSNO. AKR1A1 deletion from murine tissues dramatically lowered NADPH-dependent GSNOR activity. Conversely, GSNOR-deficient mice had increased AKR1A1 activity, revealing potential cross-talk among GSNO-dependent denitrosylases. Molecular modeling and mutagenesis of AKR1A1 identified Arg-312 as a key residue mediating the specific interaction with GSNO; in contrast, substitution of the SNO-CoA-binding residue Lys-127 minimally affected the GSNO-reducing activity of AKR1A1. Together, these findings indicate that AKR1A1 is a multi-LMW-SNO reductase that can distinguish between and metabolize the two major LMW-SNO signaling molecules GSNO and SNO-CoA, allowing for wide-ranging control of protein S-nitrosylation under both physiological and pathological conditions.


Assuntos
Aldeído Oxirredutases/metabolismo , Aldeído Redutase/metabolismo , NADP/metabolismo , Óxido Nítrico/metabolismo , Aldeído Oxirredutases/genética , Aldeído Redutase/genética , Animais , Coenzima A/metabolismo , Humanos , Cinética , Mamíferos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredução , S-Nitrosotióis/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...